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Abstract. We consider the problem of optimization of cost functionals on the infinite-dimensional manifold of diffeomorphisms. We present a4
new class of optimization methods, valid for any optimization problem setup on the space of diffeomorphisms by generalizing Nesterov accelerated5
optimization to the manifold of diffeomorphisms. While our framework is general for infinite dimensional manifolds, we specifically treat the case6
of diffeomorphisms, motivated by optical flow problems in computer vision. This is accomplished by building on a recent variational approach7
to a general class of accelerated optimization methods by Wibisono, Wilson and Jordan [56], which applies in finite dimensions. We generalize8
that approach to infinite dimensional manifolds. We derive the surprisingly simple continuum evolution equations, which are partial differential9
equations, for accelerated gradient descent, and relate it to simple mechanical principles from fluid mechanics. Our approach has natural connections10
to the optimal mass transport problem. This is because one can think of our approach as an evolution of an infinite number of particles endowed11
with mass (represented with a mass density) that moves in an energy landscape. The mass evolves with the optimization variable, and endows the12
particles with dynamics. This is different than the finite dimensional case where only a single particle moves and hence the dynamics does not13
depend on the mass. We derive the theory, compute the PDEs for accelerated optimization, and illustrate the behavior of these new accelerated14
optimization schemes.115
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1. Introduction. Accelerated optimization methods have gained wide applicability within the machine learning17
and optimization communities (e.g.,[11, 20, 22, 25, 26, 27, 29, 30, 38, 39, 37]). They are known for leading to optimal18
convergence rates among schemes that use only gradient (first order) information in the convex case. In the non-convex19
case, they appear to provide robustness to shallow local minima. The intuitive idea is that by considering a particle20
with mass that moves in an energy landscape, the particle will gain momentum and surpass shallow local minimum21
and settle in in more wider, deeper local extrema in the energy landscape. This property has made them (in conjunction22
with stochastic search algorithms) particularly useful in machine learning, especially in the training of deep networks,23
where the optimization is a non-convex problem that is riddled with local minima. These methods have so far have24
only been used in optimization problems that are defined in finite dimensions. In this paper, we consider the gener-25
alization of these methods to infinite dimensional manifolds. We are motivated by applications in computer vision,26
in particular, segmentation, 3D reconstruction, and optical flow. In these problems, the optimization is over infinite27
dimensional geometric quantities (e.g., curves, surfaces, mappings), and so the problems are formulated on infinite28
dimensional manifolds. Recently there has been interest within the machine learning community in optimization on29
finite dimensional manifolds, such as matrix groups, e.g.,[63, 31, 24], which have particular structure not available on30
infinite dimensional manifolds that we consider here.31

Recent work [56] has shown that the continuum limit of accelerated methods, which are discrete optimization al-32
gorithms, may be formulated with variational principles. This allows one to derive the continuum limit of accelerated33
optimization methods (Nesterov’s optimization method [37] and others) as an optimization problem on descent paths.34
The resulting optimal continuum path is defined by an ODE, which when discretized appropriately yields Nesterov’s35
method and other accelerated optimization schemes. The optimization problem on paths is an action integral, which36
integrates the Bregman Lagrangian. The Bregman Lagrangian is a time-explicit Lagrangian (from physics) that con-37
sists of kinetic and potential energies. The kinetic energy is defined using the Bregman divergence (see Section 2.2); it38
is designed for finite step sizes, and thus differs from classical action integrals in physics [2, 32]. The potential energy39
is the cost function that is to be optimized.40

We build on the approach of [56] by formulating accelerated optimization with an action integral, but we gener-41
alize that approach to infinite dimensional manifolds. Our approach is general for infinite dimensional manifolds, but42
we illustrate the idea here for the case of the infinite dimensional manifold of diffeomorphisms of Rn (the case of the43
manifold of curves has been recently formulated by the authors [61],[60],[62]). To do this, we abandon the Bregman44
Lagrangian framework in [56] since that assumes that the variable over which one optimizes is embedded in Rn.45
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Instead, we adopt the classical formulation of action integrals in physics [2, 32], which is already general enough to46
deal with manifolds, and kinetic energies that are defined through general Riemannian metrics rather than a traditional47
Euclidean metric, thus by-passing the need for the use of Bregman distances. Our approach requires consideration of48
additional technicalities beyond that of [56] and classical physics. Namely, in finite dimensions in Rn, one can think49
of accelerated optimization as a single particle with mass moving in an energy landscape. Since only a single particle50
moves, mass is a fixed constant that does not impact the dynamics of the particle. However, in infinite dimensions,51
one can instead think of an infinite number of particles each moving, and these masses of particles is better modeled52
with a mass density. In the case of the manifold of diffeomorphisms of Rn this mass density exists in Rn. As the53
diffeomorphism evolves to optimize the cost functional, it deforms Rn and redistributes the mass, and so the density54
changes in time. Since the mass density defines the kinetic energy and the stationary action path depends on the kinetic55
energy, the dynamics56

of the evolution to minimize the cost functional depends on the way that mass is distributed in Rn. Therefore, in57
the infinite dimensional case, one also needs to optimize and account for the mass density, which cannot be neglected.58
Further, our approach, due to the infinite dimensional nature, has evolution equations that are PDEs rather than ODEs59
in [56]. Finally, the discretization of the resulting PDEs requires the use of entropy schemes [45] since our evolution60
equations are defined as viscosity solutions of PDEs, required to treat shocks and rarefaction fans. These phenomena61
appear not to be present in the finite dimensional case.62

1.1. Contributions. Our contributions are specifically, 1. We present a novel variational approach to accelerated63
optimization on manifolds. and adapt our approach to accelerated optimization on the infinite dimensional manifold64
diffeomorphisms, i.e., smooth invertible mappings. 2. We introduce a Riemannian metric for the purpose of acceler-65
ation on diffeomorphisms, which defines the kinetic energy of a mass distribution. The metric is the same one in the66
fluid mechanics formulation of the L2 mass transport problem [6]. 3. We derive the PDE for accelerated optimization67
of any cost functional defined on diffeomorphisms, and relate it to fluid mechanics principles. 4. We present numerical68
discretizations, for both Eulerian and Lagrangian formulations of accelerated optimization on diffeomorphisms, and69
show the advantage over gradient descent and competing methods.70

Contributions over conference version of paper: A conference version of this manuscript [49] entitled ”Vari-71
ational PDEs for Acceleration on Manifolds and Application to Diffeomorphisms” was published in the journal of72
neural information processing systems in 2018. This work represents an expansion of the initial paper. The additional73
contributions are 1) We provide a Lagrangian formulation of accelerated PDE optimization on the manifold of diffeo-74
morphisms, as opposed to the Eulerian formulation in the original formulation. This shows that accelerated PDE on75
diffeomorphisms constitute a wave equation. This gives an additional justification as to why the accelerated scheme76
out-performs gradient descent in speed: the CFL conditions to the wave equation are more generous compared to gra-77
dient PDE. The formulation also allows a simple numerical scheme in the case of the particular mass model analyzed in78
this paper. 2) We derive the numerical method for the aforementioned Lagrangian formulation. 3) We benchmark our79
method on the Middlebury optical flow data set [3], and comparing against a comparable general purpose variational80
optimizer. We show a speed advantage against that optimizer.81

1.2. Related Work.82

1.2.1. Sobolev Optimization. Our work is motivated by Sobolev gradient descent approaches [50, 5, 13, 52,83
14, 51, 53, 33, 48, 58] for optimization problems on manifolds, which have been used for segmentation and optical84
flow problems. These approaches are general in that they apply to non-convex problems, and they are derived by85
computing the gradient of a cost functional with respect to a Sobolev metric rather than an L2 metric typically assumed86
in variational optimization problems. The resulting gradient flows have been demonstrated to yield coarse-to-fine87
evolutions, where the optimization automatically transitions from coarse to successively finer scale deformations.88
This makes the optimization robust to local minimizers that plague L2 gradient descents. We should point out that89
the Sobolev metric is used beyond optimization problems and have been used extensively in shape analysis (e.g.,90
[28, 35, 34, 4]). While such gradient descents are robust to local minimizers, computing them in general involves91
an expensive computation of an inverse differential operator at each iteration of the gradient descent. In the case of92
optimization problems on curves and a very particular form of a Sobolev metric this can be made computationally93
fast [52], but the idea does not generalize beyond curves. In this work, we aim to obtain robustness properties of94
Sobolev gradient flows, but without the expensive computation of inverse operators. Our accelerated approach involves95
averaging the gradient across time in the descent process, rather than an averaging across space in the Sobolev case.96
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Despite our goal of avoiding Sobolev gradients for computational speed, we should mention that our framework is97
general to allow one to consider accelerated Sobolev gradient descents (although we do not demonstrate it here),98
where there is averaging in both space and time. This can be accomplished by changing the definition of kinetic99
energy in our approach. This could be useful in applications where added robustness is needed but speed is not a100
critical factor.101

1.2.2. Optimal Mass Transport. Our work relates to the literature on the problem of optimal mass transportion102
(e.g., [54, 21, 1, 43]), especially the formulation of the problem in [6]. The modern formulation of the problem, called103
the Monge-Kantorovich problem, is as follows. One is given two probability densities �0; �1 in Rn, and the goal104
is to compute a transformation M : Rn ! Rn so that the pushforward of �0 by M results in �1 such that M has105
minimal cost. The cost is defined as the average Euclidean norm of displacement:

R
Rn jM(x) � xjp�0(x) dx where106

p � 1. The value of the minimum cost is a distance (called the Lp Wasserstein distance) on the space of probability107
measures. In the case that p = 2, [6] has shown that mass transport can be formulated as a fluid mechanics problem.108
In particular, the Wasserstein distance can be formulated as a distance arising from a Riemannian metric on the space109
of probability densities. The cost can be shown equivalent to the minimum Riemannian path length on the space of110
probability densities, with the initial and final points on the path being the two densities �0; �1. The tangent space111
is defined to be velocities of the density that infinitesimally displace the density. The Riemannian metric is just the112
kinetic energy of the mass distribution as it is displaced by the velocity, given by

R
Rn

1
2�(x)jv(x)j2 dx. Therefore,113

optimal mass transport computes an optimal path on densities that minimizes the integral of kinetic energy along the114
path.115

In our work, we seek to minimize a potential on the space of diffeomorphisms, with the use of acceleration. We116
can imagine that each diffeomorphism is associated with a point on a manifold, and the goal is to move to the bottom117
of the potential well. To do so, we associate a mass density in Rn, which as we optimize the potential, moves in Rn via118
a push-forward of the evolving diffeomorphism. We regard this evolution as a path in the space of diffeomorphisms119
that arises from an action integral, where the action is the difference of the kinetic and potential energies. The kinetic120
energy that we choose, purely to endow the diffeomorphism with acceleration, is the same one used in the fluid121
mechanics formulation of optimal mass transportation for p = 2. We have chosen this kinetic energy for simplicity122
to illustrate our method, but we envision a variety of kinetic energies can be defined to introduce different dynamics.123
The main difference of our approach to the fluid mechanics formulation of mass transport is in the fact that we do not124
minimize just the path integral of the kinetic energy, but rather we derive our method by computing stationary paths of125
the path integral of kinetic minus potential energies. Since diffeomorphisms are generated by smooth velocity fields,126
we equivalently optimize over velocities. We also optimize over the mass distribution. Thus, the main difference127
between the fluid mechanics formulations of L2 mass transport and our approach is the potential on diffeomorphisms,128
which is used to define the action integral.129

1.2.3. Diffeomorphic Image Registration. Our work relates to the literature on diffeomorphic image registra-130
tion [5, 36, 18, 19], where the goal, similar to ours, is to compute a registration between two images as a diffeomor-131
phism. There a diffeomorphism is generated by a path of smooth velocity fields integrated over the path. Rather than132
formulating an optimization problem directly on the diffeomorphism, the optimization problem is formed on a path133

of velocity fields. The optimization problem is to minimize
R 1

0
kvk2 dt where v is a time varying vector field, k � k134

is a norm on velocity fields, and the optimization is subject to the constraint that the mapping � maps one image to135
the other, i.e., I1 = I0 � ��1. The minimization can be considered the minimization of an action integral where the136
action contains only a kinetic energy. The norm is chosen to be a Sobolev norm to ensure that the generated diffeo-137
morphism (by integrating the velocity fields over time) is smooth. The optimization problem is solved in [5] by a138
Sobolev gradient descent on the space of paths. The resulting path is a geodesic with Riemannian metric given by the139
Sobolev metric kvk. In [36], it is shown these geodesics can be computed by integrating a forward evolution equation,140
determined from the conservation of momentum, with an initial velocity.141

Our framework instead uses accelerated gradient descent. Like [5, 36], it is derived from an action integral, but142
the action has both a kinetic energy and a potential energy, which is the objective functional that is to be optimized. In143
this current work, our kinetic energy arises naturally from physics rather than a Sobolev norm. One of our motivations144
in this work is to get regularizing effects of Sobolev norms without using Sobolev norms, since that requires inverting145
differential operators in the optimization, which is computationally expensive. Our kinetic energy is an L2 metric146
weighted by mass. Our method has acceleration, rather than zero acceleration in [5, 36], and this is obtained by en-147
dowing a diffeomorphism with mass, which is a mass density in Rn. This mass allows for the kinetic energy to endow148
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the optimization with dynamics. Our optimization is obtained as the stationary conditions of the action with respect149
to both velocity and mass density. The latter links our approach to optimal mass transport, described earlier. Our150
physically motivated kinetic energy and in particular the mass consideration allows us to generate diffeomorphisms151
without the use fo Sobolev norms. We also avoid the inversion of differential operators.152

1.2.4. Optical Flow. Although our framework is general in solving any optimization on infinite dimensional153
manifolds, we demonstrate the framework for optimization of diffeomorphisms and specifically for optical flow prob-154
lems formulated as variational problems in computer vision (e.g., [23, 8, 9, 55, 47, 57, 59, 10]). Optical flow, i.e.,155
determining pixel-wise correspondence between images, is a fundamental problem in computer vision that remains156
a challenge to solve, mainly because optical flow is a non-convex optimization problem, and thus few methods exist157
to optimize such problems. Optical flow was first formulated as a variational problem in [23], which consisted of a158
data fidelity term and regularization favoring smooth optical flow. Since the problem is non-convex, approaches to159
solve this problem typically involve the assumption of small displacement between frames, so a linearization of the160
data fidelity term can be performed, and this results in a problem in which the global optimum of [23] can be solved161
via the solution of a linear PDE. Although standard gradient descent could be used on the non-linearized problem, it162
is numerically sensitive, extremely computationally costly, and does not produce meaningful results unless coupled163
with the strategy described next. Large displacements are treated with two strategies: iterative warping and image164
pyramids. Iterative warping involves iteration of the linearization around the current accumulated optical flow. By use165
of image pyramids, a large displacement is converted to a smaller displacement in the downsampled images. While166
this strategy is successful in many cases, there are also many problems associated with linearization and pyramids,167
such as computing optical flow of thin structures that undergo large displacements. This basic strategy of linearization,168
iterative warping and image pyramids have been the dominant approach to many variational optical flow models (e.g.,169
[23, 8, 9, 55, 47]), regardless of the regularization that is used (e.g., use of robust norms, total variation, non-local170
norms, etc). In [55], the linearized problem with TV regularization has been formulated as a convex optimization171
problem, in which a primal-dual algorithm can be used. In [58] linearization is avoided and rather a gradient descent172
with respect to a Sobolev metric is computed, and is shown to have a automatic coarse-to-fine optimization behavior.173
Despite these works, most optical flow algorithms involve simplification of the problem into a linear problem. In this174
work, we construct accelerated gradient descent algorithms that are applicable to any variational optical flow algorithm175
in which we avoid the linearization step and aim to obtain a better optimizer. For illustration, we consider here the176
case of optical flow modeled as a global diffeomorphism, but in principle this can be generalized to piecewise diffeo-177
morphisms as in [59]. Since diffeomorphisms do not form a linear space, rather a infinite-dimensional manifold, we178
generalize accelerated optimization to that space. We show empirically that our accelerated method can out-perform179
the standard linearized approach to optical flow in terms of computational speed.180

2. Background for Accelerated Optimization on Manifolds.181

2.1. Manifolds and Mechanics. We briefly summarize the key facts in classical mechanics that are the basis for182
our accelerated optimization method on manifolds.183

2.1.1. Differential Geometry. We review differential geometry (from [16]), as this will be needed to derive our184
accelerated optimization scheme on the manifold of diffeomorphisms. First a manifold M is a space in which every185
point p 2 M has a (invertible) mapping fp from a neighborhood of p to a model space that is a linear normed vector186
space, and has an additional compatibility condition that if the neighborhoods for p and q overlap then the mapping187
fp � f�1

q is differentiable. Intuitively, a manifold is a space that locally appears flat. The model space may be finite188
or infinite dimensional when the model spaces are finite or infinite dimensional, respectively. In the latter case the189
manifold is referred to as an infinite dimensional manifold and in the former case a finite dimensional manifold. The190
space of diffeomorphisms of Rn, the space of interest in this paper, is an infinite dimensional manifold. The tangent191
space at a point p 2M is the equivalence class, [], of curves  : [0; 1]!M under the equivalence that (0) = p and192
(fp � )0(0) are the same for each curve  2 []. Intuitively, these are the set of possible directions of movement at193
the point p on the manifold. The tangent bundle, denoted TM , is TM = f(p; v) : p 2M; v 2 TpMg, i.e., the space194
formed from the collection of all points and tangent spaces.195

In this paper, we will assume additional structure on the manifold, namely, that an inner product (called the196
metric) exists on each tangent space TpM . Such a manifold is called a Riemannian manifold. A Riemannian manifold197
allows one to formally define the lengths of curves  : [�1; 1] ! M on the manifold. This allows one to construct198
paths of critical length, called geodesics, a generalization of a path on constant velocity on the manifold. Note that199
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while existence of geodesics is guaranteed on finite dimensional manifolds, in the infinite dimensional case, there is200
no such guarantee. The Riemannian metric also allows one to define gradients of functions g : M ! R defined on201
the manifold: the gradient rg(p) 2 TpM is defined to be the vector that satisfies d

dε g(("))jε=0 = hrg(p); 0(0)i,202
where (0) = p, the left hand side is the directional derivative and the right hand side is the inner product from the203
Riemannian structure.204

2.1.2. Mechanics on Manifolds. We now briefly review some of the formalism of classical mechanics on man-205
ifolds that will be used in this paper. The material is from [2, 32]. The subject of mechanics describes the principles206
governing the evolution of a particle that moves on a manifold M . The equations governing a particle are Newton’s207
laws. There are two viewpoints in mechanics, namely the Lagrangian and Hamiltonian viewpoints, which formulate208
more general principles to derive Newton’s equations. In this paper, we use the Lagrangian formulation to derive209
equations of motion for accelerated optimization on the manifold of diffeomorphisms. Lagrangian mechanics obtains210
equations of motion through variational principles, which makes it easier to generalize Newton’s laws beyond sim-211
ple particle systems in R3, especially to the case of manifolds. In Lagrangian mechanics, we start with a function212
L : TM ! R, called the Lagrangian, from the tangent bundle to the reals. Here we assume that M is a Riemannian213
manifold. One says that a curve  : [�1; 1] ! M is a motion in a Lagrangian system with Lagrangian L if it is214
an extremal of A =

R
L((t); _(t)) dt. The previous integral is called an action integral. Hamilton’s principle of215

stationary action states that the motion in the Lagrangian system satisfies the condition that �A = 0, where � denotes216
the variation, for all variations of A induced by variations of the path  that keep endpoints fixed. The variation is217
defined as �A := d

ds A(~(t; s))js=0 where ~ : [�1; 1]2 ! M is a smooth family of curves (a variation of ) on the218
manifold such that ~(t; 0) = (t). The stationary conditions give rise to what is known as Lagrange’s equations. A219
natural Lagrangian has the special form L = T � U where T : TM ! R+ is the kinetic energy and U : M ! R220
is the potential energy. The kinetic energy is defined as T (v) = 1

2 hv; vi where h�; �i is the inner product from the221
Riemannian structure. In the case that one has a particle system in R3, i.e., a collection of particles with masses mi,222
in a natural Lagrangian system, one can show that Hamilton’s principle of stationary action is equivalent to Newton’s223
law of motion, i.e., that d

dt (mi _ri) = � ∂U
∂ri

where ri is the trajectory of the ith particle, and _ri is the velocity. This224
states that mass times acceleration is the force, which is given by minus the derivative of the potential in a conservative225
system. Thus, Hamilton’s principle is more general and allows us to more easily derive equations of motion for more226
general systems, in particular those on manifolds.227

In this paper, we will consider Lagrangian non-autonomous systems where the Lagrangian is also an explicit228
function of time t, i.e., L : TM�R! R. In particular, the kinetic and potential energies can both be explicit functions229
of time: T : TM � R ! R and U : M � R ! R. Autonomous systems have an energy conservation property and230
do not converge; for instance, one can think of a moving pendulum with no friction, which oscillates forever. Since231
the objective in this paper is to minimize an objective functional, we want the system to eventually converge and232
Lagrangian non-autonomous systems allow for this possibility. For completness, we present some basic facts of the233
Hamiltonian perspective to elaborate on the previous point, although we do not use this in the present paper. The234
generalization of total energy is the Hamiltonian, defined as the Legendre transform of the Lagrangian: H(p; q; t) =235
hp; _qi � L(q; _q; t) where p = dL

d _q is the fiber derivative of L with respect to _q, i.e., dL
d _q � w = d

dε L(q; _q + "w)jε=0.236
From the Hamiltonian, one can also obtain a system of equations describing motion on the manifold. It can be shown237
that if L = T � U then H = T + U and more generally, dH

dt = �∂L∂t along the stationary path of the action. Thus,238
if the Lagrangian is natural and autonomous, the total energy is preserved, otherwise energy could be dissipated based239
on the partial of the Lagrangian with respect to t.240

2.2. Variational Approach to Accelerated Optimization in Finite Dimensional Vector Spaces. Accelerated241
gradient optimization can be motivated by the desire to make an ordinary gradient descent algorithm 1) more robust242
to noise and local minimizers, and 2) speed-up the convergence while only using first order (gradient) information.243
For instance, if one computes a noisy gradient due imperfections in obtaining an accurate gradient, a simple heuristic244
to make the algorithm more robust is to compute a running average of the gradient over iterations, and use that as245
the search direction. This also has the advantage, for instance in speeding up optimization in narrow shallow valleys.246
Gradient descent (with finite step sizes) would bounce back and forth across the valley and slowly descend down, but247
averaging the gradient could cancel the component across the valley and more quickly optimize the function. Strategic248
dynamically changing weights on previous gradients can boost the descent rate. Nesterov put forth the following249
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famous scheme [37] which attains an optimal rate of order1
t 2 in the case of a smooth, convex cost functionf (x):250

yk+1 = xk �
1
�

r f (xk ); xk+1 = (1 �  k )yk+1 +  k yk ;  k =
1 � � k

� k + 1
; � k =

1 +
q

1 + 4� 2
k � 1

2
251

wherexk is thek-th iterate of the algorithm,yk is an intermediate sequence, and k are dynamically updated weights.252

Recently [56] presented a variational generalization of Nesterov's [37] and other accelerated gradient descent253

schemes inRn based on the Bregman divergence of a convex distance generating functionh:254

(2.1) d(y; x) = h(y) � h(x) � r h(x) � (y � x)255

and careful discretization of the Euler-Lagrange equations for the time integral of the following Bregman Lagrangian256

L(X; V; t ) = ea( t )+  ( t )
h
d(X + e� a( t ) V; X ) � eb( t ) U(X )

i
257

where the potential energyU represents the cost to be minimized. In the Euclidean case whereh(x) = 1
2 jxj2 gives258

d(y; x) = 1
2 jy � xj2, this simpli�es to259

L = e ( t )
�
e� a( t ) 1

2
jV j2 � ea( t )+ b( t ) U(X )

�
260

whereT = 1
2 jV j2 is the kinetic energy of a unit mass particle inRn . Nesterov's methods [37, 41, 40, 39, 42, 38]261

belong to a subfamily of Bregman Lagrangians with the following choice of parameters (indexed byk > 0)262

a = log k � log t; b = k log t + log �;  = k log t263

which, in the Euclidean case, yields a non-autonomous Lagrangian as follows:264

(2.2) L =
tk+1

k

�
T � �k 2tk � 2U

�
265

In the case ofk = 2 , for example, the stationary conditions of the integral of this time-explicit action yield the266

continuum limit of Nesterov's accelerated mirror descent [38] derived in both [46, 29].267

Since the Bregman Lagrangian assumes that the underlying manifold is a subset ofRn (in order to de�ne the268

Bregman distance2), which many manifolds do not have - for instance the manifold of diffeomorphisms that we269

consider in this paper, we instead use the original classical mechanics formulation, which already provides a formalism270

for considering general metrics though the Riemannian distance, although not equivalent to the Bregman distance.271

3. Accelerated Optimization for Diffeomorphisms. In this section, we use the mechanics of particles on man-272

ifolds developed in the previous section, and apply it to the case of the in�nite-dimensional manifold of diffeomor-273

phisms inRn for generaln. This allows us to generalize accelerated optimization to in�nite dimensional manifolds.274

Diffeomorphisms are smooth mappings� : Rn ! Rn whose inverse exists and is also smooth. Diffeomorphisms275

form a group under composition. The inverse operator on the group is de�ned as the inverse of the function, i.e.,276

� � 1(� (x)) = x. Here smoothness will mean that two derivatives of the mapping exist. The group of diffeomorphisms277

will be denoted Diff(Rn ). Diffeomorphisms relate to image registration and optical �ow, where the mappings between278

two images are often modeled as diffeomorphisms3. Recovering diffeomorphisms from two images will be formulated279

as an optimization problemU(� ) whereU will correspond to the potential energy. Note we avoid callingU the energy280

as is customary in computer vision literature, because for us the energy will refer to the total mechanical energy (i.e.,281

2One could in fact generalize such operations as addition and subtraction in manifolds, using the exponential and logarithmic maps. We avoid
this since in the types of manifolds that we deal with, computing such maps itself requires solving a PDE or another optimization problem. We
avoid all these complications, by going back to the formalism in classical mechanics.

3In medical imaging, the model of diffeomorphisms for registration is fairly accurate since typically full 3D scans are available and thus all
points in one image correspond to the other image and vice versa. Of course there are situations (such as growth of tumors) where the diffeomorphic
assumption is invalid. In vision, typically images have occlusion phenomena and multiple objects moving in different ways. So a diffeomorphism
is not a valid assumption, it is however a good model when restricted to a single object in the un-occluded part.
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the sum of the kinetic and potential energies). We do not make any assumptions on the particular form of the potential282

in this section, as our goal is to be able to accelerateanyoptimization problem for diffeomorphisms, given that one283

can compute a gradient of the potential. The formulation here allows any of the numerous cost functionals developed284

over the past three decades for image registration to be accelerated.285

In the �rst sub-section, we give the formulation and evolution equations for the case of acceleration without energy286

dissipation (Hamiltonian is conserved), since most of the calculations are relevant for the case of energy dissipation,287

which is needed for the evolution to converge to a diffeomorphism. In the second sub-section, we formulate and288

compute the evolution equations for the energy dissipation case, which generalizes Nesterov's method to the in�nite289

dimensional manifold of diffeomorphisms. Finally, in the last sub-section we give an example potential and its gradient290

calculation for a standard image registration or optical �ow problem.291

3.1. Acceleration Without Energy Dissipation.292

3.1.1. Formulation of the Action Integral. Since the potential energyU is assumed given, in order to formulate293

the action integral in the non-dissipative case, we need to de�ne kinetic energyT on the space of diffeomorphisms.294

Since diffeomorphisms form a manifold, we can apply the the results in the previous section and note that the kinetic295

energy will be de�ned on the tangent space to Diff(Rn ) at a particular diffeomorphism� . This will be denoted296

T� Diff (Rn ). The tangent space at� can be roughly thought of as the set of local perturbationsv of � given for all297

" small that perserve the diffeomorphism property, i.e.,� + "v is a diffeomorphism. One can show that the tangent298

space is given by299

(3.1) T� Diff (Rn ) = f v : � (Rn ) ! Rn : v is smoothg:300

In the above, since� is a diffeomorphism, we have that� (Rn ) = Rn . However, we writev : � (Rn ) ! Rn to301

emphasize that the velocity �elds in the tangent space are de�ned on the range of� , so thatv is interpreted as a302

Eulerian velocity. By de�nition of the tangent space, an in�nitesimal perturbation of� by a tangent vector, given by303

� + "v , will be a diffeomorphism for" suf�ciently small. Note that the previous operation of addition is de�ned as304

follows:305

(� + "v )(x) = � (x) + "v (� (x)) :306

The tangent space is a set of smooth vector �elds on� (Rn ) in which the vector �eld at each point� (x), displaces307

� (x) in�nitesimally by v(� (x)) to form another diffeomorphism.308

We note a classical result from [17], which will be of utmost importance in our derivation of accelerated optimiza-309

tion on Diff(Rn ). The result is that any (orientable) diffeomorphism may be generated by integrating a time-varying310

smooth vector �eld over time, i.e.,311

(3.2) @t � t (x) = vt (� t (x)) ; x 2 Rn ;312

where@t denotes partial derivative with respect tot, � t denotes a time varying family of diffeomorphisms evaluated313

at the timet, andvt is a time varying collection of vector �elds evaluated at timet. The patht ! � t (x) for a �xed x314

represents a trajectory of a particle starting atx and �owing according to the velocity �eld.315

The space on which the kinetic energy is de�ned is now clear, but one more ingredient is needed before we can316

de�ne the kinetic energy. Any accelerated method will need a notion ofmass, otherwise acceleration is not possible,317

e.g., a mass-less ball will not accelerate. We generalize the concept of mass to the in�nite dimensional manifold318

of diffeomorphisms, where there are in�nitely more possibilities than a single particle in the �nite dimensional case319

considered by [56]. There optimization is done on a �nite dimensional space, the space of asingleparticle, and the320

possible choices of mass are just different �xed constants. The choice of the constant, given the particle's mass remains321

�xed, is irrelevant to the �nal evolution. This is different in than the case of diffeomorphisms. Here we imagine that322

an in�nite number of particles densely distributed inRn with mass exist and are displaced by the velocity �eldv at323

every point. Since the particles are densely distributed, it is natural to represent the mass of all particles with amass324

density� : Rn ! R, similar to a �uid at a �xed time instant. The density� is de�ned as mass divided by volume325

as the volume shrinks. During the evolution to optimize the potentialU, the particles are displaced continuously and326

thus the density of these particles will in general change over time. Note the density will change even if the density at327

the start is constant except in the case of full translation motion (whenv is spatially constant). The latter case is not328

general enough, as we want to capture general diffeomorphisms. We will assume that the system of particles inRn is329
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FIG. 1. Schematic of the quantities de�ned to derive accelerated optimization on the diffeomorphism manifold.� denotes the time-varying
forward mapping (at each time the diffeomorphism� t is a point on the manifold), is its inverse.v denotes the time-varying vector �eld that
de�nes� and is an element of the tangent space to diffeomorphisms.� is the time-varying mass density (the ellipsoids depict a in�nitesimal mass
being transported by� ) de�ned on the image domain
 . Note� does not relate to the imagesI 0 ; I 1 to be registered, and is an auxiliary variable
used to de�ne the optimization procedure.

closed and so we impose amass preservation constraint, i.e.,330

(3.3)
Z

Rn
� (x) dx = 1 ;331

where we assume the total mass is one without loss of generality. Note that the evolution of a time varying density� t332

as it is deformed in time by a time varying velocity is given by thecontinuity equation, which is a local form of the333

conservation of mass given by (3.3). The continuity equation is de�ned by the partial differential equation334

(3.4) @t � (x) + div (� (x)v(x)) = 0 ; x 2 Rn335

where div() denotes the divergence operator acting on a vector �eld and is div(F ) =
P n

i = @x i F
i where@x i is the336

partial with respect to thei th coordinate andF i is thei th component of the vector �eld. We will assume that the mass337

distribution dies down to zero outside a compact set so as to avoid boundary considerations in our derivations.338

We now have the two ingredients, namely the tangent vectors to Diff(Rn ) and the concept of mass, which allows339

us to de�ne a natural physical extension of the kinetic energy to the case of an in�nite mass distribution. We present340

one possible kinetic energy to illustrate the idea of accelerated optimization, but this is by no means the only de�nition341

of kinetic energy. We envision this to be part of the design process in which one could get a multitude of various342

different accelerated optimization schemes by de�ning different kinetic energies. Our de�nition of kinetic energy is343

just the kinetic energy arising from �uid mechanics:344

(3.5) T(v) =
Z

� (Rn )

1
2

� (x)jv(x)j2 dx;345

which is just the integration of single particle's kinetic energy1
2 mjvj2 and matches the de�nition of the kinetic energy346

of a sum of particles in elementary physics. Note that the kinetic energy is just one-half times the norm squared for the347

norm arising from the Riemannian metric [2], i.e., an inner product on the tangent space of Diff(Rn ). The Riemannian348

metric is given byhv1; v2i =
R

Rn � (x)v1(x) � v2(x) dx, which is just a weightedL2 inner product.349

We are now ready to de�ne the action integral for the case of Diff(Rn ), which is de�ned onpathsof diffeomor-350

phisms. A path of diffeomorphisms is� : [0; 1 ) � Rn ! Rn and we will denote the diffeomorphism at timet along351

this path as� t . Since diffeomorphisms are generated by velocity �elds, we may equivalently de�ne the action in terms352

of pathsof velocity �elds. A path of velocity �elds is given byv : [0; 1 ) � Rn ! Rn , and the velocity at timet353

along the path is denotedvt . Notice that the action requires a kinetic energy and the kinetic energy is dependent on354
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the mass density. Thus, a path of densities� : [0; 1 ) � Rn ! R+ is required, which represents the mass distribution355

of the particles inRn as they are deformed along time by the velocity �eldvt . This path of densities is subject to the356

continuity equation. With this, the action integral is then357

(3.6) A =
Z

[T(vt ) � U(� t )] dt;358

where the integral is over time, and we do not specify the limits of integration as it is irrelevant as the endpoints will be359

�xed and the action will be thus independent of the limits. Note that the action is implicitly a function of three paths,360

i.e., vt ; � t and� t . Further, these paths are not independent of each other as� t depends onvt through the generator361

relation (3.2), and� t depends onvt through the continuity equation (3.4).362

3.1.2. Stationary Conditions for the Action. We now derive the stationary conditions for the action integral363

(3.6), and thus the evolution equation for a path of diffeomorphisms, which is Hamilton's principle of stationary364

action, equivalent to a generalization of Newton's laws of motion extended to diffeomorphisms. As discussed earlier,365

we would like to �nd the stationary conditions for the action integral (3.6), de�ned on the path� t , under the conditions366

that it is generated by a path of smooth velocity �eldsvt , which is also coupled with the mass density� t .367

We treat the computation of the stationary conditions of the action as a constrained optimization problem with368

respect to the two aforementioned constraints. To do this, it is easier to formulate the action in terms of the path of369

the inverse diffeomorphisms� � 1
t , which we will call  t . This is because the non-linear PDE constraint (3.2) can be370

equivalently reformulated as the following linear transport PDE in the inverse mappings:371

(3.7) @t  t (x) + [ D t (x)]vt (x) = 0 ; x 2 Rn372

whereD denotes the derivative (Jacobian) operator. To derive the stationary conditions with respect to the constraints,373

we use the method of Lagrange multipliers. We denote by� : [0; 1 ) � Rn ! Rn the Lagrange multiplier according to374

(3.7). We denote� : [0; 1 ) � Rn ! R as the Lagrange multiplier for the continuity equation (3.4). Because we would375

like to be able to have possibly discontinuous solutions of the continuity equation, we formulate it in its weak form376

by multiplying the constraint by the Lagrange multiplier and integrating by parts thereby removing the derivatives on377

possibly discontinuous� :378

(3.8)
Z Z

Rn
� [@t � + div (pv)] dx dt = �

Z Z

Rn
[@t � + r � � v] � dx dt;379

wherer denotes the spatial gradient operator. Notice that we ignore the boundary terms from integration by parts as380

we will eventually compute stationary conditions, and we are assuming �xed initial conditions for� 0 and we assume381

that� 1 converges and thus cannot be perturbed when computing the variation of the action integral. With this, we can382

formulate the action integral with Lagrange multipliers as383

A =
Z

[T(v) � U(� )] dt +
Z Z

Rn
� T [@t  + ( D )v] dx dt �

Z Z

Rn
[@t � + r � � v] � dx dt;(3.9)384

385

where we have omitted the subscripts to avoid cluttering the notation. Notice that the potentialU is now a function of386

 , and the action depends now on�;  ; v and the Lagrange multipliers�; � .387

We now compute variations ofA as we perturb the paths by variations�� , �v and�� along the paths. The variation388

with respect to� is de�ned as�A � �� = d
d" A(� + "��; v;  )

�
�
" =0 , and the other variations are de�ned in a similar389

fashion. By computing these variations, we get the following stationary equations:390

THEOREM 3.1. The stationary conditions of the path for the action(3.9)are391

@t � + ( D� )v + � div(v) = ( r  ) � 1r U(� )(3.10)392

�v + ( r  )� � � r � = 0(3.11)393

@t � + r � � v =
1
2

jvj2(3.12)394
395

wherer U(� ) 2 T� Diff(Rn ) denotes the functional gradient ofU with respect to� (see Appendix 6.1), andr �; r  396

are spatial gradients. The original constraints(3.7)on the mapping and the continuity equation(3.4)are part of the397

stationary conditions.398
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Proof. See Appendix 6.2.399

While the previous theorem does give the stationary conditions and evolution of the Lagrange multipliers, in order400

to de�ne a forward evolution method where the initial conditions for the density, mapping and velocity are given,401

we would need initial conditions for the Lagrange multipliers, which are not known from the calculation leading to402

Theorem 3.1. Therefore, we will now eliminate the Lagrange multipliers and rewrite the evolution equations in terms403

of forward equations for the velocity, mapping and density. This leads to the following theorem:404

THEOREM 3.2 (Evolution Equations for the Path of Least Action).The stationary conditions for the path of the405

action integral(3.6)subject to the constraints(3.2)on the mapping and the continuity equation(3.4)are given by the406

forward evolution equation407

(3.13) @t v = � (Dv)v �
1
�

r U(� );408

which describes the evolution of the velocity. The forward evolution equation for the diffeomorphism is given by(3.2),409

that of its inverse mapping is given by(3.7), and the forward evolution of its density is given by(3.4).410

Proof. See Appendix 6.3.411

REMARK 1 (Relation to Euler's Equations).The left hand side of the equation (along with the continuity equation)412

is the left hand side of thecompressible Euler Equation[32], which describes the motion of a perfect �uid (i.e.,413

assuming no heat transfer or viscous effects). The difference is that the right hand side in(3.13)is the gradient of the414

potential, which we seek to optimize, that depends on the diffeomorphism that is the integral of the velocity over time,415

rather than the gradient of pressure that is purely a function of density in the Euler equations.416

With this theorem, it is now possible to numerically compute the stationary path of the action, by starting with417

initial conditions on the density, mapping and velocity. The velocity is updated by (3.13), the mapping is then updated418

by (3.2), and the density is updated by (3.4). Note that the density at each time impacts the velocity as seen in (3.13).419

These equations are a set of coupled partial differential equations. They describe the path of stationary action when420

the action integral does not arise from a system that has dissipative forces. Notice the velocity evolution is a natural421

analogue of Newton's equations. Indeed, if we consider the material derivative, which describes the time rate of change422

of a quantity subjected to a time dependent velocity �eld, then one can write the velocity evolution (3.13) as follows.423

THEOREM 3.3 (Equivalence of Critical Paths of Action to Newton's 2nd Law).The velocity evolution(3.13)424

derived as the critical path of the action integral(3.6) is425

(3.14) �
Dv
Dt

= �r U(� );426

whereDf
Dt := @t f + ( Df )v is the material derivative.427

Proof. This is consequence of the de�nition of material derivative.428

The material derivative is obtained by taking the time derivative off along the patht ! � (t; x ), i.e., d
dt f (t; � (t; x )) .429

Therefore,Dv=Dt is the derivative of velocity along the path. The equation (3.14) says the time rate of change of430

velocity times density is equation to minus the gradient of the potential, which is Newton's 2nd law, i.e., the mass431

times acceleration is equal to the force, which is given by the gradient of the potential in a conservative system.432

The evolution described by the equations above will not converge. This is because the total energy is conserved,433

and thus the system will oscillate over a (local) minimum of the potentialU, forever, unless the initialization is at a434

stationary point of the potentialU. In practice, due to discretization of the equations, which require entropy preserving435

schemes [45], the implementation will dissipate energy and the evolution equations eventually converge.436

3.1.3. Viscosity Solution and Regularity.An important question is whether the evolution equations given by437

Theorem 3.2 maintain that the mapping� t remains a diffeomorphism given that one starts the evolution with a diffeo-438

morphism. This is of course important since all of the derivations above were done assuming that� is a diffeomor-439

phism, moreover for many applications one wants to maintain a diffeomorphic mapping. The answer is af�rmative440

since to de�ne a solution of (3.13), we de�ne the solution as theviscosity solution(see e.g., [15, 44, 45]). The viscosity441

solution is de�ned as the limit of the equation (3.13) with a diffusive term of the velocity added to the right hand side,442
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as the diffusive coef�cient goes to zero. More precisely443

(3.15) @t v" = � (Dv " )v" + " � v" �
1
�

r U(� );444

where� denotes the spatial Laplacian, which is a smoothing operator. This leads to a smooth (C1 ) solution due to445

the known smoothing properties of the Laplacian. The viscosity solution is thenv = lim " ! 0 v. In practice, we do446

not actually add in the diffusive term, but rather approximate the effects with small" by using entropy conditions in447

our numerical implementation. One may of course add the diffusive term to induce more regularity into the velocity448

and thus into the mapping� . Since the velocity is smooth (C1 ), the integral of a smooth vector �eld will result in a449

diffeomorphism [17].450

3.1.4. Discussion.An important property of these evolution equations, when compared to virtually all previous451

image registration and optical �ow methods is the lack of need to compute inverses of differential operators, which are452

global smoothing operations, and are expensive. Typically, in optical �ow (such as the classical Horn & Schunck [23])453

or LDDMM [5] where one computes Sobolev gradients, one needs to compute inverses of differential operators, which454

are expensive. Of course one could perform standard gradient descent, which does not typically require computing455

inverses of differential operators, but gradient descent is known not to be feasible and it is hard to numerically im-456

plement without signi�cant pre-processing, and easily gets stuck in what are effectively numerical local minima. The457

equations in Theorem 3.2 are all local, and experiments suggest they are not susceptible to the problems that plague458

gradient descent.459

3.1.5. Constant Density Case.We now analyze the case when the density� is chosen to be a �xed constant, and460

we derive the evolution equations. In this case, the kinetic energy simpli�es as follows461

(3.16) T(v) =
�
2

Z

� (Rn )
jv(x)j2 dx:462

We can de�ne the action integral as before (3.6) with the previous de�nition of kinetic energy, and we can derive the463

stationary conditions by de�ning the following action integral incorporating the mapping constraint (3.7). This gives464

the modi�ed action integral as465

A =
Z

[T(v) � U(� )] dt +
Z Z

Rn
� T [@t  + ( D )v] dx dt:(3.17)466

467

Note that the continuity equation is no longer imposed as a constraint as the density is treated as a �xed constant. This468

leads to the following stationary conditions.469

THEOREM 3.4. The stationary conditions of the path for the action(3.17)are470

@t � + ( D� )v + � div(v) = ( r  ) � 1r U(� )(3.18)471

�v + ( r  )� = 0(3.19)472473

wherer U(� ) 2 T� Diff(Rn ) denotes the functional gradient ofU with respect to� , andr  are spatial gradients.474

The original constraint(3.7)on the mapping is part of the stationary conditions.475

Proof. The computation is similar to the non-constant density case Appendix 6.2. Note that stationary condition476

with respect to the mapping remains the same as the density constraint in the non-constant density case does not477

depend on the mapping. The stationary condition with respect to the velocity avoids the variation with respect to the478

density constraint in the non-constant density case, and remains the same except for the last term.479

As before, we can solve for the velocity evolution directly. This results in the following result.480

THEOREM 3.5 (Evolution Equations for the Path of Least Action).The stationary conditions for the path of the481

action integral(3.6)with kinetic energy(3.16)subject to the constraint(3.2)on the mapping is given by the forward482

evolution equation483

(3.20) @t v = � (Dv)v � (r v)v � vdiv(v) �
1
�

r U(� )484

The forward evolution equation for the diffeomorphism is given by(3.2), and that of its inverse mapping is given by485

(3.7).486
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Proof. We can apply Lemma 6.5 in Appendix 6.3 withw = � 1
� v.487

The former equation (3.20) (without the potential term) is known as the Euler-Poincaré equation (EPDiff), the geodesic488

equation for the diffeomorphism group under theL 2 metric [36]. This shows that one relationship between Euler's489

equation and EPDiff is that Euler's equation is derived by a time-varying density in the kinetic energy, which is490

optimized over the mass distribution along with the velocity whereas EPDiff assumes a constant mass density in the491

kinetic energy. The non-constant density model (arising in Euler's equation) has a natural interpretation in terms of492

Newton's equations.493

3.2. Acceleration with Energy Dissipation. We now present the case of deriving the stationary conditions for494

a system on the manifold of diffeomorphisms in which total energy dissipates. This is important so the system will495

converge to a local minima, and not oscillate about a local minimum forever, as the evolution equations from the496

previous section. To do this, we consider time varying scalar functionsa; b : [0; 1 ) ! R+ , and de�ne the action497

integral, again de�ned on paths of diffeomorphisms, as follows:498

(3.21) A =
Z

[at T(vt ) � bt U(� t )] dt;499

whereat ; bt denote the values of the scalar at timet. We may again go through �nding the stationary conditions500

subject to the mapping constraint (3.7) and the continuity equation constraint (3.4), with Lagrange multiplier and then501

derive the forward evolution equations. The �nal result is as follows:502

THEOREM 3.6 (Evolution Equations for the Path of Least Action).The stationary conditions for the path of the503

action integral(3.21)subject to the constraints(3.2) on the mapping and the continuity equation(3.4) are given by504

the forward evolution equation505

(3.22) a@t v + a(Dv)v + ( @t a)v = �
b
�

r U(� );506

which describes the evolution of the velocity. The same evolution equations as Theorem 3.2 for the mappings(3.2)and507

(3.7), and density hold(3.4).508

Proof. See Appendix 6.4.509

If we consider certain forms ofa andb, then one can arrive at various generalizations of Nesterov's schemes. In510

particular, the choice ofa andbbelow are those considered in [56] to explain various versions of Nesterov's schemes,511

which are optimization schemes in �nite dimensions.512

THEOREM 3.7 (Evolution Equations for the Path of Least Action: Generalization of Nesterov's Method).If we513

choose514

at = e t � � t and bt = e� t + � t +  t515

where516

� t = log p � log t; � t = plog t + log C;  t = plog t;517

C > 0 is a constant, andp is a positive integer, then we will arrive at the evolution equation518

(3.23) @t v = �
p + 1

t
v � (Dv)v �

1
�

Cp2tp� 2r U(� ):519

In the casep = 2 andC = 1=4 the evolution reduces to520

(3.24) @t v = �
3
t
v � (Dv)v �

1
�

r U(� ):521

The casep = 2 was considered in [56] as the continuum equivalent to Nesterov's original scheme in �nite dimensions.522

We can notice that this evolution equation is the same as the evolution equations for the non-dissipative case (3.13),523

except for the term� (3=t)v. One can interpret the latter term as a frictional dissipative term, analogous to viscous524

resistance in �uids. Thus, even in this case the equation has a natural interpretation that arises from Newton's laws.525
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Thus, the �nal system of equations (with generala; b) that are to be discretized and used in a numerical imple-526

mentation is527

@t � = v � �(3.25)528

@t v = �
@t a
a

v � (Dv)v �
1
�

b
a

r U(� );(3.26)529

v(0; x) = v0(x)(3.27)530

� (0; x) = x(3.28)531

� (0; x) = � 0(x);(3.29)532533

which is anEuleriandescription of the accelerated motion.534

3.3. Second Order PDE for Acceleration.We now convert the system of PDE for the forward mapping and535

velocity into a second order PDE in the forward mapping itself, which constitutes the Lagrangian description of the536

accelerated motion. Interestingly, this eliminates the non-linearity from the non-potential terms.537

THEOREM 3.8 (Second Order PDE for the Forward Mapping).The accelerated optimization, arising from the538

stationarity of the action integral(3.21), given by the system of PDE de�ned by(3.22)and the forward mapping(3.2)539

is540

(3.30) a
@2�
@t2

+ ( @t a)
@�
@t

+
b
� 0

er U(� ) = 0 ;541

where� 0 is the initial density,er U(� ) = [ r U(� ) � � ] det r � is the gradient de�ned on the un-warped domain, i.e.,542

�A � �� =
R

Rn
er U(� )(x) � �� (x) dx is satis�ed for all perturbations�� of � .543

Proof. We differentiate the de�nition of the forward mapping in time to obtain (3.2) and substituting the velocity544

evolution (3.22):545

@tt � = ( @t v) � � + [( Dv) � � ]@t �546

= � [(Dv) � � ]v � � �
@t a
a

v � � �
b
a

1
� � �

r U(� ) � � + [( Dv) � � ]@t �547

= �
@t a
a

@t � �
b
a

1
� � �

r U(� ) � �548
549

We note the following for anyB � Rn , because of mass preservation, we have that550

Z

B
� 0(x) dx =

Z

� (B )
� t (y) dy =

Z

B
� t (� (x)) det r � (x) dx;551

where the last equality is obtained by a change of variables. Since we can takeB arbitrarily small, � 0(x) =552

� t (� (x)) det r � (x). Using this last formula, we see that553

1
� � �

r U(� ) � � =
1
� 0

er U(� );554

which proves the proposition.555

Note that the advantage of this Lagrangian approach is that the evolution of the mass has been eliminated, making556

for a simpler implementation. The advantage of the Eulerian formulation, however, is that it more easily allows for557

more general mass �ow models than considered in this paper (see [61, 60]), which may not have as simple Lagrangian558

formulation.559

3.4. Illustrative Potential Energy for Diffeomorphisms. We now consider a standard potential for illustrative560

purposes in simulations, and derive the gradient. The objective is for the evolution equations in the previous section561

to minimize the potential, which is a function of the mapping. Our evolution equations in the previous section are562

general and work withanypotential; our purpose in this section is not to advocate a particular potential, but to show563
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how the gradient of the potential is computed so that it can be used in the evolution equations in the previous section.564

We consider the standard Horn & Schunck model for optical �ow de�ned as565

(3.31) U(� ) =
1
2

Z

Rn
jI 1(� (x)) � I 0(x)j2 dx +

1
2

�
Z

Rn
jr (� (x) � x)j2 dx;566

where� > 0 is a weight, andI 0; I 1 are images. The �rst term is the data �delity which measures how close� deforms567

I 1 back toI 0 through the squared norm, and the second term penalizes non-smoothness of the displacement �eld,568

given by� (x) � x at the pointx. Notice that the potential is a function of only the mapping� , and not the velocity.569

We now compute the functional gradient ofU with respect to the mapping� , denoted by the expressionr U(� ).570

This gradient is de�ned by the relation (see Appendix 6.1)�U � �� =
R

� (Rn ) r U(� ) � �� dx, i.e., the functional571

gradient satis�es the relation that theL2 inner product of it with any perturbation�� of � is equal to the variation of572

the potentialU with respect to the perturbation�� . With this de�nition, one can show that (see Appendix 6.1)573

(3.32) r U(� ) = [( I 1 � I 0 �  )r I 1 � � (� � ) �  ] det r  ;574

wheredet denotes the determinant.575

We can also see that the gradient de�ned on the un-warped domain is576

(3.33) er U(� ) = ( I 1 � � � I 0)r I 1 � � � � � �;577

therefore, the generalization of Nesterov's method on the original domain itself, in this case is578

(3.34)
@2�
@t2

+
3
t

@�
@t

�
�
� 0

� � +
1
� 0

(I 1 � � � I 0)r I 1 � � = 0 ;579

which is a dampedwave equation.580

4. Experiments. We conduct experiments to illustrate the behavior of accelerated gradient descent (6.30) and581

compare it to gradient descent, and then illustrate the advantage of acceleration gradient descent against a standard582

optimizer for optical �ow on a benchmark dataset. We demonstrate proof-of-concept of accelerated optimization583

using the Eulerian approach (3.25)-(3.29) in Section 4.1 and then demonstrate the Lagrangian approach (3.30) in584

Section 3.30 against standard optical �ow optimization.585

4.1. Eulerian Approach. In our �rst set of experiments (Sub-sections 4.1.1 to 4.1.3), we compare the discrete586

implementation of the Eulerian approach ((4.1.1)) to accelerated optimization on the manifold of diffeomorphisms to587

standard (RiemannianL 2) gradient descent. This will illustrate how much one can gain by incorporating acceleration,588

which requires little additional effort over gradient descent. Over gradient descent, acceleration requires only to update589

the velocity by the velocity evolution in the previous section, and the density evolution. Both these evolutions are cheap590

to compute since they only involve local updates. Note the gradient descent of the potentialU is given by choosing591

v = �r U(� ), the other evolution equation for the mapping� (3.2) and (3.7) remains the same, and no density592

evolution is considered. We note that we implement the equations as they are, and there is no additional processing593

that is now common in optical �ow methods (e.g., no smoothing images nor derivatives, no special derivative �lters,594

no multi-scale techniques, no use of robust norms, median �lters, etc) to illustrate the advantage of the optimizer.595

Although our equations are for diffeomorphisms on all ofRn , in practice be have �nite images, and the issue of596

boundary conditions come up. For simplicity to illustrate our ideas, we choose periodic boundary conditions. Our597

numerical scheme is used in these experiments are given in Appendix 6.5. Our intention is to show that simply by598

using acceleration, one can get an impractical algorithm (gradient descent) to become practical, especially with respect599

to speed.600

In our �rst set of experiments (Sub-sections 4.1.1 to 4.1.3), we choose the step size to satisfy CFL conditions. For601

ordinary gradient descent we choose� t < 1=(4� ), for accelerated gradient descent we have the additional evolution602

of the velocity (3.24), and our numerical scheme has CFL condition� t < 1=maxx 2 
 fj v(x)j; jDv (x)jg. Also,603

because there is a diffusion according to regularity, we found that� t < 1=(4� � maxx 2 
 fj v(x)j; jDv (x)jg) gives604

stable results. The step size for accelerated gradient descent is lower in our experiments than accelerated gradient605

descent. The initialization is� (x) =  (x) = x, v(x) = 0 , and� (x) = 1 =j
 j wherej
 j is the area of the domain of606

the image.607
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FIG. 2. Convergence Comparison: Two binary images with squares in which the square is translated are registered. The value of the
functional (to be minimized) versus the iteration number is shown for both gradient descent (GD) and accelerated gradient descent (AGD).

4.1.1. Convergence analysis.In this experiment, the images are two white squares against a black background.608

The sizes of the squares are50� 50pixels wide, and the square (of size20� 20) in the �rst image is translated by10609

pixels to form the second image. Small images are chosen due to the fact gradient descent is too impractically slow610

for reasonable sized images without multi-scale approaches that even modest sized images (e.g.,256� 256) do not611

converge in a reasonable amount of time, and we will demonstrate this in an experiment later. Figure 2 shows the plot612

of the potential energy (3.31) of both gradient descent and accelerated gradient descent as the evolution progresses.613

Here� = 5 (images are scaled between 0 and 1). Notice that accelerated gradient descent very quickly accelerates to614

a global minimum, surpasses the global minimum and then oscillates until the friction term slows it down and then it615

converges very quickly. Notice that this behavior is expected since accelerated gradient descent is not a strict descent616

method (it does not necessarily decrease the potential energy each step). Gradient descent very slowly decreases the617

energy each iteration and eventually converges.618

We now repeat the same experiment, but with different images to show that this behavior is not restricted to the619

particular choice of images, one a translation of the other. To this end, we choose the images again to be50 � 50.620

The �rst image has a square that is17 � 17 and the second image has a rectangle of size20� 14 and is translated by621

8 pixels. We choose the regularity� = 2 , since the regularity should be chosen smaller to account for the stretching622

and squeezing, resulting in a non-smooth �ow �eld. A plot of results of this simulation is shown in Figure 3. Again623

accelerated gradient accelerates very quickly at the start, then oscillates and the oscillations die down and then it624

converges. This time the potential does not go to zero since the �nal �ow is not a translation and thus the regularity625

term is non-zero. Gradient descent converges faster than the case of translation due to larger� and thus larger step626

size. However, it appears to be stuck in a higher energy con�guration. In fact, gradient descent has not fully converged627

- gradient descent is slow in adapting to the scale changes and becomes extremely slow in stretching and squeezing628

in different directions. We verify that gradient descent has not fully converged by plotting just the �rst term of the629

potential, i.e., the reconstruction error, which is zero for accelerated gradient descent at convergence, indicating that630

the �ow correctly reconstructsI 0 from I 1. On the other hand, gradient descent has an error of about50, indicating the631

�ow does not fully warpI 1 to I 0, and therefore it not the correct �ow. This does not appear to be a local minimum,632

just slow convergence.633

We again repeat the same experiment, but with real images from a cardiac MRI sequence, in which the heart634

beats. The transformation relating the images is a general diffeomorphism that is not easily described as in the previous635

experiments. The images are of size256� 256. We choose� = 0 :02. A plot of the potential versus iteration number for636

both gradient descent (GD) and accelerated gradient descent (AGD) is shown in the left of Figure 4. The convergence637

is quicker for accelerated gradient descent. The right of Figure 4 shows the original images and the images warped638

under both the result from gradient descent and accelerated gradient descent, and that they both produce a similar639

correct warp, but accelerated gradient obtains the warp in much fewer iterations.640
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FIG. 3. Convergence Comparison: Two images are registered, each are binary images. The �rst is a square and the second image is a
translated and non-uniformly scaled version of the square in the �rst image. [Left]: The cost functional to be minimized versus the iteration number
is shown for both gradient descent (GD) and accelerated gradient descent (AGD). AGD converges to a lower energy solution quicker. [Right]: Note
that GD did not fully converge as the convergence is extremely slow in obtaining �ne scale details of the non-uniform scaling. This is veri�ed by
plotting the image reconstruction error:kI 1 � � � I 0k, which shows that AGD reconstructsI 0 with zero error.

I 1 I 0

I 1 � � gd I 1 � � agd

FIG. 4. Convergence Comparison: Two MR cardiac images from a sequence are registered. The images are related through a general
deformation. [Left]: A plot of the potential versus the iteration number in the minimization using gradient descent (GD) and accelerated gradient
descent (AGD). AGD converges at a quicker rate. [Right]: The original images and the back-warped images using the recovered diffeomorphisms.
Note thatI 1 � � should appear close toI 0 . Both methods seem to recover a similar transformation, but AGD recovers it faster.

4.1.2. Convergence analysis versus parameter settings.We now analyze the convergence of accelerated gra-641

dient descent and gradient descent as a function of the regularity� and the image size. To this end, we �rst analyze642

an image pair of size50� 50 in which one image has a square of size16� 16and the other image is the same square643

translated by7 pixels. We now vary� and analyze the convergence. In the left plot of Figure 5, we show the number of644

iterations until convergence versus the regularity� . As � increases, the number of iterations for both gradient descent645
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